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Abstract 
The R-tree, one of the most popular access methods for 
rectangles, IS based on the heurlstlc optlmlzatlon of the area 
of the enclosmg rectangle m each mner node By running 
numerous experiments m a standardized testbed under highly 
varying data, queries and operations, we were able to design 
the R*-tree which mcorporates a combined optlmlzatlon of 
area, margin and overlap of each enclosmg rectangle m the 
directory Using our standardized testbed m an exhaustive 
performance comparison, It turned out that the R*-tree 
clearly outperforms the exlstmg R-tree varmnts Guttman’s 
linear and quadratic R-tree and Greene’s variant of the R-tree 
This superlorlty of the R*-tree holds for different types of 
queries and operations, such as map overlay. for both 
rectangles and multldlmenslonal points m all experiments 
From a practical pomt of view the R*-tree 1s very attractive 
because of the followmg two reasons 1 It effrclently 
supports pomt and spattal data at the same time and 2 Its 
lmplementatlon cost 1s only slightly higher than that of 
other R-trees 

l.Introduction 
In this paper we will consider spatial access methods 
(SAMs) which are based on the approxlmatlon of a complex 
spatial object by the mmlmum boundmg rectangle with the 
sides of the rectangle parallel to the axes of the data space 
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The most important property of this simple approxlmatlon 
1s that a complex object 1s represented by a limited number 
of bytes Although a lot of mformatlon 1s lost, mnumum 
bounding rectangles of spatial oblects preserve the most 
essential geometric properties of the object, 1 e the 
location of the oblect and the extension of the object in 
each axis 

In [SK 881 we showed that known SAMs organlzmg 
(mmlmum bounding) rectangles are based on an underlymg 
point access method (PAM) using one of the followmg three 
techniques cllpplng, transformation and overlapping 
regions 

The most popular SAM for storing rectangles 1s the R- 
tree [Gut 841 Followmg our classlflcatlon, the R-tree 1s 
based on the PAM B+-tree [Knu 731 usmg the technique 
over-lapping regions Thus the R-tree can be easily 
implemented which considerably contributes to Its 
popularity 

The R-tree 1s based on a heurlstlc optlmlzatlon The 
optlmlzatton crlterlon which It persues, 1s to mmlmlze the 
area of each enclosing rectangle m the mner nodes This 
crlterlon IS taken for granted and not shown to be the best 
possible Questions arise such as Why not mnumlze the 
margin or the overlap of such mlnlmum bounding 
rectangles Why not optimize storage utlllzatlon? Why not 
optunlze all of these criteria at the same hme? Could these 
criteria mteract in a negative way? Only an engineering 
approach will help to find the best possible combmatlon of 
optimization criteria 

Necessary condltlon for such an engmeermg approach 1s 
the avallablhty of a standardized testbed which allows us to 
run large volumes of experiments with highly varying data, 
queries and operations We have implemented such a 
standardized testbed and used It for performance comparisons 
parucularly of pomt access methods [KSSS 891 

As the result of our research we designed a new R-tree 
varmnt, the R*-tree, which outperforms the known R-tree 
variants under all experiments For many reallstlc profiles 
of data and operations the gam m performance 1s quite 
considerable Additionally to the usual point query, 
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rectangle mtersectton and rectangle enclosure query, we have 
analyzed our new R*-tree for the map overlay operation. 
also called spatial lout. which 1s one of the most rmportant 
operatrons m geographic and envrronmental database 
systems 

This paper is organized as follows In sectron 2, we 
tntroduce the prrncrples of R-trees rncludrng their 
optimizatron criteria In section 3 we present the existing 
R-tree variants of Guttman and Greene Section 4 describes 
rn detail the design our new R*-tree The results of the 
comparrsons of the R*-tree wrth the other R-tree varmnts 
are reported m section 5 Section 6 concludes the paper 

2. Principles of R-trees and possible 
optimization criteria 

An R-tree 1s a B+-tree like structure which stores multrdrm- 
ensional rectangles as complete ObJects without clipping 
them or transformmg them to higher drmensronal points 
before 

A non-leaf node contarns entries of the form (cp, 
Rectangle) where cp 1s the address of a child node m the 
R-tree and Rectangle 1s the mnumum boundmg rectangle 
of all rectangles which are entries m that child node A leaf 
node contams entries of the form (Old, Rectangle) where 
Old refers to a record m the database, describing a spatial 
oblect and Rectangle 1s the enclosrng rectangle of that 
spatial oblect Leaf nodes containing entries of the form 
(datuob.tect, Rectangle) are also possrble This wrll not 
affect the basic structure of the R-tree In the followmg we 
wrll not consider such leaf nodes 

Let M be the maximum number of entries that will fit m one 
node and let m be a parameter specrfymg the mrmmum 
number of entries m a node (2 5 m < M/2) An R-tree 
satisfies the following properties 
l The root has at least two children unless rt 1s a leaf 
l Every non-leaf node has between m and M children unless 

it is the root 
l Every leaf node contans between m and M entries unless 

It 1s the root 
l All leaves appear on the same level 

An R-tree (R*-tree) 1s completely dynamrc, msertrons and 
deletions can be intermixed with queries and no perrodrc 
global reorgamzatron 1s required Obvrously, the structure 
must allow overlappmg drrectory rectangles Thus rt cannot 
guarantee that only one search path 1s requued for an exact 
match query For further mformatron we refer to [Gut841 
We wrll show m this paper that the overlappmg-regrons- 
techruque does not rmply bad average retrieval performance 
Here and rn the followmg, we use the term directory 
rectangle, which 1s geometrrcally the minrmum bounding 
rectangle of the underlymg rectangles 

The main problem rn R-trees 1s the followrng For an 
arbitrary set of rectangles, dynamrcally burld up bounding 
boxes from subsets of between m and M rectangles, m a 
way that arbitrary retrieval operatrons with query rectangles 
of arbitrary srze are supported effrcrently The known 

parameters of good retrieval performance affect each other m 
a very complex way, such that rt 1s rmposstble to optrmlze 
one of them without influencing other parameters whtch 
may cause a deterroratron of the overall performance 
Moreover, smce the data rectangles may have very different 
size and shape and the drrectory rectangles grow and shrmk 
dynamically, the success of methods which wrll opttmrze 
one parameter 1s very uncertam Thus a heurrstrc approach IS 
applied, whrch is based on many different experiments 
carried out m a systematrc framework 

In this section some of the parameters which are essential 
for the retrieval performance are considered Furthermore, 
tnterdependencres between different parameters and 
optnnrzatron criteria are analyzed 

(01) The area covered by a drrectory rectangle should be 
mtnrmrzed, 1 e the area covered by the boundmg rectangle 
but not covered by the enclosed rectangles, the dead space, 
should be mmlmrzed Thus will Improve performance smce 
decrsrons which paths have to be traversed, can be taken on 
higher levels 

(02) The overlap between drrectory rectangles should be 
mwmrzed Thts also decreases the number of paths to be 
traversed 

(03) The margrn of a dwectory rectangle should be 
mlnrmrzed Here the margin 1s the sum of the lengths of the 
edges of a rectangle Assummg fixed area, the oblect wnh 
the smallest margrn IS the square Thus mmtmrzmg the 
margin mstead of the area, the dvectory rectangles wrll be 
shaped more quadratrc Essentrally queries with large 
quadratic query rectangles will profit from this optimizatron 
More important. mmrmrzatlon of the margm wrll basrcally 
improve the structure Since quadratic objects can be packed 
easier, the bounding boxes of a level will build smaller 
directory rectangles m the level above Thus clustermg 
rectangles into bounding boxes wrth only little variance of 
the lengths of the edges wrll reduce the area of dtrectory 
rectangles 

(04) Storage utlltzatron should be optlmrzed Higher 
storage utrhzatron will generally reduce the query cost as the 
height of the tree wrll be kept low Evidently. query types 
with large query rectangles are influenced more smce the 
concentratron of rectangles m several nodes wrll have a 
stronger effect rf the number of found keys IS hrgh 

Keepmg the area and overlap of a directory rectangle small, 
requires more freedom m the number of rectangles stored m 
one node Thus mmrmrzmg these parameters will be paid 
with lower storage utrlrzatton. Moreover, when applymg 
(01) or (02) more freedom rn choosrng the shape 1s 
necessary Thus rectangles wrll be less quadratic Wrth (01) 
the overlap between directory rectangles may be affected m 
a postttve way srnce the coverrng of the data space 1s 
reduced As for every geometrrc optrmrzatron, muumrzmg 
the margins wrll also lead to reduced storage uttltzatton 
However, smce more quadratrc directory rectangles support 
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packing better, It will be easier to maintain high storage 
utlllzatlon Obviously, the performance for queries with 
sufflclently large query rectangles will be affected more by 
the storage utlllzatlon than by the parameters of (Ol)-(03) 

3. R-tree Variants 
The R-tree 1s a dynamic structure Thus all approaches of 
optlmlzlng the retrieval performance have to be applied 
during the msertlon of a new data rectangle The insertion 
algorithm calls two more algorithms m which the crucial 
declslons for good retrieval performance are made The first 
IS the algorithm ChooseSubtree Beglnnmg in the root, 
descending to a leaf, it finds on every level the most 
suitable subtree to accomodate the new entry The second 1s 
the algorithm Split It 1s called, If ChooseSubtree ends m a 
node filled with the maximum number of entries M Split 
should distribute M+l rectangles mto two nodes m the most 
appropriate manner 

In the followmg, the ChooseSubtree- and Split-algorithms, 
suggested In available R-tree variants are analyzed and 
dlscussed We will first consider the orlgmal R-tree as 
proposed by Guttman m [Gut 841 

Algorithm ChooseSubtree 
CSl Set N to be the root 
CS2 If N 1s a leaf, 

return N 
else 

Choose the entry m N whose rectangle needs least 
area enlargement to include the new data Resolve 
ties by choosmg the entry with the rectangle of 
smallest area 

end 
CS3 Set N to be the chlldnode pointed to by the 

chlldpomter of the chosen entry an repeat from CS2 

Obviously, the method of optlmlzatlon 1s to mnumlze the 
area covered by a directory rectangle, 1 e (01) This may 
also reduce the overlap and the cpu cost will be relatively 
low 

Guttman discusses split-algorithms with exponential, 
quadratic and linear cost with respect to the number of 
entries of a node All of them are deslgned to mmlmlze the 
area, covered by the two rectangles resultmg from the split 
The exponential split finds the area with the global 
mmlmum, but the cpu cost 1s too high The others try to 
fmd approxlmatlons In his experiments, Guttman obtains 
nearly the same retrieval performance for the linear as for 
the quadratic version We implemented the R-tree m both 
variants However m our tests with different dlstrlbutlons, 
different overlap, variable numbers of data-entries and 
different combmatlons of M and m, the quadratic R-tree 
yielded much better performance than the linear version (see 
also section 5) Thus we will only discuss the quadratic 
algorithm m detail 

Algorithm QuadraticSplit 
[Divide a set of M+l entries mto two groups] 
QSl Invoke PickSeeds to choose two entries to be the first 

entries of the groups 
QS2 Repeat 

DlstrlbuteEntry 
until 

all entries are distributed or 
one of the two groups has M-m+1 entries 

QS3 If entries remam, assign them to the other group 
such that it has the mmlmum number m 

Algorithm PickSeeds 
PSl For each pau of entries El and E2, compose a 

rectangle R mcludmg El rectangle and E2 rectangle 
Calculate d = area(R) - area(E1 rectangle) - 

area(E2 rectangle) 
PS2 Choose the pan with the largest d 

Algorithm DistributeEntry 
DE1 Invoke P&Next to choose the next entry to be 

assigned 
DE2 Add It to the group whose covermg rectangle will 

have to be enlarged least to accommodate It Resolve 
ties by adding the entry to the group with the 
smallest area, then to the one with the fewer entries, 
then to either 

Algorithm PickNext 
PNl For each entry E not yet m a group, calculate d, = the 

area mcrease required m the covermg rectangle of 
Group 1 to include E Rectangle 
Calculate $ analogously for Group 2 

PN2 Choose the entry with the maximum difference 
between d, and d, 

The algorithm PickSeeds fmds the two rectangles which 
would waste the largest area put m one group In this sense 
the two rectangles are the most distant ones It 1s important 
to mention that the seeds will tend to be small too, If the 
rectangles to be distributed are of very different size (and) or 
the overlap between them 1s high The algorithm 
DlstrlbuteEntry assigns the remaining entries by the 
crlterlon of mnumum area P&Next chooses the entry with 
the best area-goodness-value m every sltuatlon 

If this algorithm starts with small seeds, problems may 
occur If m d-l of the d axes a far away rectangle has nearly 
the same coordinates as one of the seeds, It will be 
distributed first Indeed, the area and the area enlargement of 
the created needle-like bounding rectangle will be very 
small, but the distance 1s very large This may nutlate a 
very bad split Moreover. the algorithm tends to prefer the 
bounding rectangle, created from the first assignment of a 
rectangle to one seed Smce It was enlarged, It will be larger 
than others Thus It needs less area enlargement to mclude 
the next entry, It will be enlarged again. and so on Another 
problem is, that If one group has reached the maximum 
number of entries M-m+l, all remaining entries are assigned 
to the other group without consldermg geometric properties 
Figure 1 (see section 4 3) gives an example showing all 
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these problems The result 1s either a split with much 
overlap (fig lc) or a split with uneven dlstrtbutlon of the 
entries reducing the storage utlhzatlon (fig lb) 

We tested the quadratic split of our R-tree lmplementatlon 
varying the mmlmum number of entries m = 20%, 30%, 
35% ,40% and 45% relatively to M and obtained the best 
retrieval performance with m set to 40% 

On the occasion of comparmg the R-tree with other 
structures storing rectangles, Greene proposed the 
followmg alternative split-algorithm [Gre 891 To determine 
the appropriate path to insert a new entry she uses 
Guttman’s original ChooseSubtree-algorithm 

Algorithm Greene’s-Split 
[Divide a set of M+l entries mto two groups] 
GSI Invoke ChooseAxls to determme the axis 

perpendicular to which the split 1s to be performed 
GS2 Invoke Distribute 

Algorithm ChooseAxis 
CA1 Invoke PickSeeds (see p 5) to find the two most 

distant rectangles of the current node 
CA2 For each axis record the separation of the two seeds 
CA3 Normalize the separations by dlvldmg them by the 

length of the nodes enclosing rectangle along the 
appropriate axis 

CA4 Return the axis with the greatest normalized 
separation 

Algorithm Distribute 
Dl Sort the entries by the low value of then rectangles 

along the chosen axis 
D2 Assign the first (M+l) dlv 2 entries to one group, the 

last (M+l) dlv 2 entries to the other 
D3 If M+l 1s odd, then assign the remaining entry to the 

group whose enclosmg rectangle will be 
increased least by its addition 

Almost the only geometric crlterlon used m Greene’s split 
algorithm 1s the choice of the split axis Although 
choostng a suitable split axis 1s Important, our 
mvestlgatlons show that more geometric optimization 
criteria have to be applied to considerably improve the 
retrieval performance of the R-tree In spite of a well 
clustermg, m some sltuatlons Greene’s split method cannot 
fmd the “nght” axis and thus a very bad split may result 
Figure 2b (see p 12) depicts such a sltuatlon 

4. The R*-tree 

4.1 Algorithm ChooseSubtree 
To solve the problem of choosmg an appropriate insertion 
path, previous R-tree versions take only the area parameter 
into conslderatlon In our mvestlgatlons, we tested the 
parameters area, margin and overlap m different 
combmatlons, where the overlap of an entry 1s defined as 
follows 

Let&, ,Ep be the entries m the current node Then 
P 

overlap = c alea(E;,Redangle n E,Rtiangle) , 1s k $ p 
1=1,1#k 

The version W&I the best retrieval performance 1s described 
m the followmg algorithm 

Algorithm ChooseSubtree 
CSl Set N to be the root 
CS2 If N 1s a leaf, 

return N 
else 

If the chlldpomters m N point to leaves [determine 
the mmimum overlap cost], 
choose the entry m N whose rectangle needs least 
overlap enlargement to include the new data 
rectangle Resolve ties by choosmg the entry 
whose rectangle needs least area enlargement, 

then 
the entry with the rectangle of smallest area 

d the chlldpomters m N do not pomt to leaves 
[determme the mtmmum area cost], 
choose the entry m N whose rectangle needs least 
area enlargement to mclude the new data 
rectangle Resolve ties by choosmg the entry 
with the rectangle of smallest area 

end 
CS3 Set N to be the childnode pomted to by the 

chlldpomter of the chosen entry and repeat from CS2 

For choosmg the best non-leaf node, alternatlve methods 
did not outperform Guttman’s original algorithm For the 
leaf nodes, mmlmlzmg the overlap performed slightly 
better 

In this version, the cpu cost of determmmg the overlap 
1s quadrant 111 the number of entries, because for each entry 
the overlap with all other entries of the node has to be 
calculated However, for large node sizes we can reduce the 
number of entries for which the calculation has to be done, 
smce for very distant rectangles the probabllltty to yield 
the mmlmum overlap 1s very small Thus, m order to reduce 
the cpu cost, this part of the algorithm might be modlfled 
as follows 

[determme the nearly mmnnum overlap cost] 
Sort the rectangles m N m mcreasmg order of 
then area enlargement needed to mclude the new 
data rectangle 
Let A be the group of the first p entrles 
From the entries m A, consldermg all entries m 
N, choose the entry whose rectangle needs least 
overlap enlargement Resolve ties as described 
above 

For two dlmenslons we found that with p set to 32 there 1s 
nearly no reduction of retrieval performance to state For 
more than two dlmenslons further tests have to be done 
Nevertheless the cpu cost remains higher than the original 
version of ChooseSubtree. but the number of disc accesses 
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1s reduced for the exact match query precedmg each msertlon 
and 1s reduced for the ChooseSubtree algortthm Itself 

The tests showed that the ChooseSubtree optlmlzatlon 
improves the retrieval performance partlculary m the 
followmg sltuatlon Queries wrth small query rectangles on 
datafiles wrth non-unrformly dlstrlbuted small rectangles or 
points 

In the other cases the performance of Guttman’s 
algorithm was similar to this one Thus principally an 
improvement of robustness can be stated 

4 2 Split of the R*-tree 
The R*-tree uses the followmg method to fmd good sphts 
Along each axis, the entries are first sorted by the lower 
value, then sorted by the upper value of then rectangles For 
each sort M-2m+2 dlstrlbutlons of the M+l entrles mto two 
groups are determmed. where the k-th dlstrlbutlon (k = 
1, ,(M-2m+2)) 1s described as follows The first group 
contains the first (m-l)+k entrles, the second group 
contams the remaining entrles 

For each dlstrlbutlon goodness values are determined 
Depending on these goodness values the final dlstrlbutlon 
of the entries IS determined Three different goodness values 
and different approaches of using them in different 
combmatlons are tested experlmentally 

(1) area-value area[bb(first group)] + 
area[bb(second group)] 

(11) margm-value margm[bb(fust group)] + 
margm[bb(second group)] 

(111) overlap-value area[bb(first group) n 
bb(second group)] 

Here bb denotes the boundmg box of a set of rectangles 

Possible methods of processmg are to determme 
l the minunum over one axis or one sort 
l the mmlmum of the sum of the goodness values over one 

axis or one sort 
l the overall mmunum 

The obtained values may be applied to determine a spht axis 
or the final dlstrlbutlon (on a chosen split axls ) The best 
overall performance resulted from the followmg algorithm 

Algorithm Split 
Sl Invoke ChooseSplltAxls to determme the axis, 

perpendicular to which the spht 1s performed 
s2 Invoke ChooseSplltIndex to determine the best 

dlstrlbutlon mto two groups along that axls 
s3 Dlstrlbute the entrles mto two groups 

Algorithm ChooseSplitAxis 
CSAl For each axls 

Sort the entrles by the lower then by the upper 
value of their rectangles and determme all 
dlstrlbutlons as described above Compute S. the 
sum of all margin-values of the different 
dlstrlbutlons 

end 
CSA2 Choose the axls with the mmlmum S as split axis 

Algorithm ChooseSplitlndex 
CSIl Along the chosen split axIs, choose the 

dlstrlbutlon with the mmunum overlap-value 
Resolve ties by choosmg the dlstrlbutlon with 
mmunum area-value 

The split algorithm 1s tested with m = 20%, 302, 40% and 
45% of the maximum number of entrles M As ex- perunents 
with several values of M have shown, m = 40% yields the 
best performance Additionally, we varied m over the life 
cycle of one and the same R*-tree m order to correlate the 
storage utlllzatlon with geometric paremeters However, 
even the followmg method did result m worse retrieval 
performance Compute a split usmg ml = 30% of M, then 
compute a split using m2 =40% If spllt(m2)ylelds overlap 
and spllt(ml) does not, take spllt(m,), otherwlse take 
vllt(q) 

Concernmg the cost of the split algorithm of the R*-tree 
we will mention the following facts For each axis 
(dlmenslon) the entries have to be sorted two times which 
requires O(M log(M)) tune As an experlmental cost analysis 
has shown, thrs needs about half of the cost of the split 
The remammg split cost 1s spent as follows For each axls 
the margm of 2*(2*(M-2m+2)) rectangles and the overlap of 
2*(M-2m+2) dlstnbunons have to be calculated 

4 3 Forced Relnsert 
Both, R-tree and R*-tree are nondetermmlstlc m allocatmg 
the entrles onto the nodes 1 e different sequences of 
msertlons will build up different trees For this reason the 
R-tree suffers from its old entrees Data rectangles inserted 
durmg the early growth of the structure may have introduced 
directory rectangles, which are not sultable to guarantee a 
good retrieval performance m the current situation A very 
local reorganlzatton of the directory rectangles 1s 
performend during a split But this 1s rather poor and 
therefore it 1s desirable to have a more powerful and less 
local mstrument to reorgamze the structure 

The discussed problem would be maintamed or even 
worsened, If underfilled nodes, resultmg from deletion of 
records would be merged under the old parent Thus the 
known approach of treatmg underfilled nodes 111 an R-tree 1s 
to delete the node and to remsert the orphaned entrles m the 
correspondmg level [Gut 841 This way the ChooseSubtree 
algorithm has a new chance of distributing entries mto 
different nodes 

Smce it was to be expected, that the deletion and 
reinsertion of old data rectangles would Improve the 
retrieval performance, we made the followmg simple 
experiment with the linear R-tree Insert 20000 umformly 
dlstrlbuted rectangles Delete the fast 10000 rectangles and 
insert them agaln The result was a performance 
improvement of 20% up to 50%(l) dependmg on the types 
of the queries Therefore to delete randomly half of the data 
and then to Insert It agam seems to be a very simple way of 
tuning existing R-tree datafiles But this 1s a stattc 
sltuahon. and for nearly static datafiles the pack algorithm 
[RL 851 1s a more sophlstlcated approach 

To achieve dynanuc reorgamzatlons, the R*-tree forces 
entries to be remserted during the msertlon routme The 
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following algorithm 1s based on the ability of tne insert 
routme to msert entries on every level of the tree as already 
required by the deletion algorithm [Gut 841 Except for the 
overflow treatment, It 1s the same as described orlgmally by 
Guttman and therefore It 1s only sketched here 

Algorithm InsertData 
ID1 Invoke Insert startmg with the leaf level as a 

parameter, to Insert a new data rectangle 

Algorithm Insert 
11 Invoke ChooseSubtree. with the level as a parameter, 

to fmd an appropriate node N, m which to place the 
new entry E 

12 If N has less than M entries, accommodate E m N 
If N has M entries. invoke OverflowTreatment with the 
level of N as a parameter [for reinsertion or spht] 

13 If OverflowTreatment was called and a split was 
performed, propagate OverflowTreatment upwards 
If necessary 
If OverflowTreatment caused a spht of the root, create a 
new root 

14 Adjust all covermg rectangles in the msertion path 
such that they are mmlmum boundmg boxes 
enclosmg then children rectangles 

Algorithm OverflowTreatment 
OTl If the level 1s not the root level and this IS the first 

call of OverflowTreatment m the given level 
durmg the Insertion of one data rectangle, then 

mvoke Reinsert 
else 

mvoke Split 
end 

Algorithm Reinsert 
RI1 For all M+l entries of a node N, compute the distance 

between the centers of their rectangles and the center 
of the bounding rectangle of N 
Sort the entries m decreasmg order of their distances 
computed m RI1 
Remove the first p entries from N and adjust the 
bounding rectangle of N 
In the sort, defined 111 R12, starting with the maxlmum 
distance (= far remsert) or mmunum distance (= close 
reinsert), mvoke Insert to remsert the entries 

RI2 

RI3 

RI4 

If a new data rectangle 1s Inserted, each first overflow 
treatment on each level will be a reinsertion of p entries 
This may cause a split in the node which caused the 
overflow if all entrles are reinserted m the same location 
Otherwise splits may occur in one or more other nodes, but 
m many sltuattons sphts are completely prevented The 
parameter p can be varied mdependently for leaf nodes and 
non-leaf nodes as part of performance tunmg, and different 
values were tested experimentally The experiments have 
shown that p = 30% of M for leaf nodes as well as for non- 
leaf nodes yields the best performance Furthermore, for all 
data files and query files close remsert outperforms far 
remsert Close reinsert prefers the node which mcluded the 

entries oerore. ana tnis 1s mlenueu, DeCdube 1~s enclosmg 
rectangle was reduced m size Thus this node has lower 
probablllty to be selected by ChooseSubtree agam 

Summarizmg. we can say 
l Forced remsert changes entries between neighboring 

nodes and thus decreases the overlap 
l As a side effect, storage utlllzatton IS unproved 
l Due to more restructurmg, less sphts occur 
l Since the outer rectangles of a node are remserted, the 

shape of the directory rectangles will be more quadratic 
As discussed before, this 1s a desuable property 

Obviously, the cpu cost will be higher now smce the 
msertlon routme 1s called more often This 1s alleviated, 
because less splits have to be performed The experiments 
show that the average number of disc accesses for msertlons 
increases only about 4% (and remains the lowest of all R- 
tree variants), tf Forced Reinsert 1s applied to the R*-tree 
This 1s particularly due to the structure lmprovmg properties 
of the insertion algorithm 

R&l ovdllkd~ 
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5. Performance Comparison 
5 1 Experimental Setup and Results of the 

Experiments 

We ran the performance comparison on SUN workstations 
under UNIX usmg Modula-2 unplementalons of the different 
R-tree variants and our R*-tree Analogously to our 
performance comparison of PAM’s and SAM’s m [KSSS 891 
we keep the last accessed path of the trees m mam memory 
If orphaned entries occur from msertlons or delettons, they 
are stored m mam memory additionally to the path 

In order to keep the performance comparison 
manageable, we have chosen the page size for data and 
directory pages to be 1024 bytes which 1s at the lower end 
of reahstlc page sizes Using smaller page sizes, we obtain 
slmllar performance results as for much larger file sizes 
From the chosen page size the maxnnum number of entries 
m dnectory pages 1s 56 According to our standardized 
testbed we have restricted the maxunum number of entries m 
a data page to 50 

As candidates of our performance comparison we selected 
the R-tree with quadratic split algorithm (abbre- vlatlon qua 
Gut), Greene’s variant of the R-tree (Greene) and our R*-tree 
where the parameters of the different structures are set to the 
best values as described in the previous sections 
Addltlonally, we tested the most popular R-tree 
Implementation, the variant with the linear split algorithm 
(lm Gut) The popularity of the lmear R-tree 1s due to the 
statement m the orlgmal paper [Gut841 that no essential 
performance gam resulted from the quadratic version vs the 
linear version For the linear R-tree we found m=20% (of 
M) to be the variant with the best performance 

To compare the performance of the four structures we 
selected six data flies contalnlng about 100,000 2- 
dlmenslonal rectangle Each rectangle 1s assumed to be m 
the unit cube [O,l)* In the followmg each data file 1s 
described by the dlstrlbutlon of the centers of the rectangles 
and by the tripe1 (n, cl,* , nv,,,) Here n denotes the 
number of rectangles, P,~ 1s the mean value of the area of a 
rectangle and nv,, = o,, / JIP~ 1s the normahzed varmnce 
where oarca denotes the variance of the areas of the 
rectangles Obviously, the parameter nv,,, Increases 
mdependently of the dlstrlbutlon the more the areas of the 
rectangles differ from the mean value and the average 
overlap 1s simply obtamed by n* p,- 

W 

W) 

“Uniform” 
The centers of the rectangles follow a 2-dimensional 
mdependent umform dlstrlbuuon 
(n = 100,000, para = 0001, nvarea = 9505) 

“Cluster” 
The centers follow a dlstrlbutlon with 640 clusters, 
each cluster contams about 1600 ObJects 
(n = 99,968, pflea = 00002, nvarea = 1 538) 

(F3) “Parcel” 
First we decompose the umt square mto 100,000 
dujomt rectangles Then we expand the area of each 
rectangle by the factor 2 5 
(n = 100,000, parea = 00002504, nvarea = 30 3458) 

(F4) “Real-data” 
These rectangles are the mmlmum boundmg rectangles 
of elevahon hnes from real cartography data 
(n = 120,576, pare, = 0000926, nvarea = 1 504) 

(F5) “Gaussian” 
The centers follow a 2-dlmenslonal independent 
Gaussian dlstrlbutlon 
(n = 100,000, parea = 00008, nvarea = 89875) 

m “Mixed-Uniform” 
The centers of the rectangles follow a 2-dunenslonal 
independent umform dlstrlbutlon 
First we take 99,000 small rectangles with 

warea = 0000101 Then we add 1,000 large rectangles 

with parea = 001 Finally these two data files are 
merged to one 
(n = 100,000, parea = 00002, nvarea = 6 778) 

For each of the flies (Fl) - (F6) we generated queries of the 
followmg three types 
. rectangle mtersectlon query Given a rectangle S, find 

all rectangles R m the file with R n S z @ 
l powt query Given a point P, fmd all rectangles R m 

the file with P E R 
. rectangle enclosure query Given a rectangle S, find all 

rectangles R m the file with R 2 S 

For each of these flies (Fl) - (F6) we performed 400 
rectangle Intersection queries where the ratio of the x- 
extension to the y-extension umformly varies from 0 25 to 
2 25 and the centers of the query rectangles themselves are 
uniformly dlstrlbuted m the unit cube In the followmg, we 
consider four query files (Ql) - (44) of 100 rectangle 
mtersectlon queries each The area of the query rectangles of 
each query file (Ql) - (44) varies from l%, 0 l%, 0 01% to 
0 001% relatively to the area of the data space For the 
rectangle enclosure query we consider two query files (QS) 
and (46) where the correspondmg rectangles are the same as 
m the query files (Q3) and (Q4), respectively Addltlonally, 
we analyzed a query file (47) of 1.000 pomt queries where 
the query pomts are umformly dlstrlbuted 

For each query file (Ql) - (47) we measured the average 
number of disc accesses per query In the performance 
comparison we use the R*-tree as a measurmg stick for the 
other access methods. 1 e we standardize the number of 
page accesses for the queries of the R*-tree to 100% Thus 
we can observe the performance of the R-tree varmnts 
relative to the 100% performance of the R*-tree 

To analyze the performance for bulldmg up the different 
R-tree varmnts we measured the parameters insert and star 
Here msert denotes the average number of disc accesses per 
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msertlon and stor denotes the storage utlllzatlon after 
completely bulldmg up the files In the followmg table we 
present the results of our experiments depending on the 
different dlstrlbutlons (data files) For the R*-tree we also 
depict “# 
query 

hn Gut 
qua. Gut 
Greene 
R*-tree 
# accesses 

lin Gut 
qua Gut 
Greene 
R*-tree 
#accesses 

Parcel 

Im Gut 
qua Gut 
Greene 
R*-tree 
# accesses 

tin Gut 
qua Gut 
Greene 

R*-tree 
# accesses 

lin Gut 
qua Gut 
Greene 
R*-tree 
# accesses 

accesses”, the average number of disk accesses per 

Im Gut 
qua Gut 
Greene 
R*-tree 
#accesses 

Additionally to the conventional queries like pomt query, 
mtersectton query and enclosure query we have consldered 
the operation spatial Join usually used m appllcatlons like 
map overlay We have defined the spatial Jam over two 
rectangle flies as the set of all palrs of rectangles where the 
one rectangle from file1 intersects the other rectangle from 

file2 

For the spaual Jam operation we performed the followmg 
experiments 
(SJl) file1 “Parcel”-dlstrlbutron with 1000 

rectangles randomly selected from file (F3) 
flle2 data file (F4) 

(SJ2) file1 “Parcel”-dlstrlbutlon with 7500 rectangles 

randomly selected from data file (F3) 
file2 7,536 rectangles generated from elevation 

lines 
(n = 7,536, parea = 00148, nvarea = 1 5) 

(SJ3) file1 “Parcel”-dutnbutlon with 20,000 rectangles 

randomly selected from data file (F3) 
file2 file1 

For these experiments we measured the number of disc 
accesses per operation The normalized results are presented 
m the following table 

Spatial Join 

(SJ 1) (SJ 2) (SJ 3) 

lin.Gut 296 6 229.2 257 8 

qua.Gut 1424 1547 144 8 

Greene 187.1 168.3 1604 

d-tree 100.0 1000 100.0 

5.2 Interpretation of the Results 
In table 1 for the parameters stor and Insert we computed the 
unwelghted average over all SIX dlstrlbutlons (data files) 
The parameter spatral Join denotes the average over the 
three spatial Jam operations (SJl) - (SJ3) For the average 
query performance we present the parameter query average 
which 1s averaged over all seven query files for each 
dlstrlbutlon and then averaged over all six dlstrlbutlons 

lin Gut 227 5 261 2 62 7 1263 

qua.Gut 1300 1473 68 1 776 

Greene 142 3 171 3 897 7 67 

d-tree 1000 1000 73 0 613 

Table 1 utwetghted average over all dtstnbutlons 
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The loss of mformatlon m the parameter query average IS 
even less In table 2 where the parameter 1s displayed 
separately for each data file (Fl) - (F6) as an average over 
all seven query files and m table 3 where the parameter 
query average 1s depicted separately for each query (Ql) - 
(47) as an average over all six data files 

IIn Gut 

qua Gut 

Greene 
e-1 ree 

mlxuni pard tad dab 

3081 2472 2272 

1218 1281 144.6 

ZE 1155 1924 1442 

1000 lW0 1000 

Table 2 unwqhted average ovcx all seyen types of qw dependug op Ihe d~&Won 

lin. Gut 

qua, Gut 

Greene 
R*-tree 

Table 3 unwe@cd map over all lilx Ctnbuhous &pn&ng on tk quay type 

intwsedion 
,001 , 0, , ,Q 

First of all, the R*-tree clearly outperforms the R-tree 
variants m all experiments Moreover the most popular 
variant, the linear R-tree, performs essentially worse than 
all other R-trees The followmg remarks emphasize the 
superlorlty of the R*-tree m comparison to the R-trees 

The R*-tree 1s the most robust method which 1s 
underllgned by the fact that for every query file and every 
data file less disk acesses are required than by any other 
variants To say It m other words, there 1s no experiment 
where the R*-tree 1s not the wmner 

The gam m efficiency of the R*-tree for smaller query 
rectangles 1s higher than for larger query rectangles, 
because storage utlllzatlon gets more nnportant for larger 
query rectangles This emphasizes the goodness of 
the order preservation of the R*-tree (1 e rectangles 
close to each other are more likely stored together m 
one page) 

The maxunum performance gam of the R*-tree taken 
over all query and data files 1s m comparison to the 
linear R-tree about 400% (1 e It takes four tunes as long 
as the R*-tree If), to Greene’s R-tree about 200% 
and to the quadratic R-tree 180% 

As expected, the R*-tree has the best storage utilization 

l Surprlsmgly m spite of using the concept of Forced 
Reinsert, the average msertlon cost 1s not mcreased, but 
essentially decreased regarding the R-tree variants 

l The average performance gam for the spatial Jam 
operation 1s higher than for the other queries The 
quadratic R-tree, Greene’s R-tree and the lmear R-tree 
require 147%. 171% and 261% of the disc accesses of the 
R*-tree, respectively, averaged over all spatial Jam 
operations 

5.3 The R*-tree: an efficient point access method 

An important requuement for a spatial access method 1s to 
handle both spatial objects and point objects efficiently 
Points can be considered as degenerated rectangles and m 
most appllcatlons rectangles are very small relatively to the 
data space If a SAM 1s also an efficient PAM, this would 
underllgn the robustness of the SAM Moreover, m many 
appllcatlons It 1s desirable to support addltlonally to the 
boundmg rectangle of an object at least an atomar key with 
one access method 

Therefore we ran the different R-tree variants and our R*- 
tree against a benchmark proposed and used for pomt access 
methods The reader interested m the details of this 
benchmark 1s referred to [KSSS 891 In this paper, let us 
mention that the benchmark mcorporates seven data files of 
highly correlated 2-dlmensmonal points Each data file 
contains about 100.000 records For each data file we 
considered five query files each of them contammg 20 
queries The fust query files contam range queries specified 
by square shaped rectangles of size 0 1%. 1% and 10% 
relatively to the data space The other two query files 
contam partml match queries where m the one only the x- 
value and in the other only the y-value 1s speclfled, 
respectively 

Similar to the previous sectlon, we measured the storage 
utlllzatlon (stor), the average msertlon cost (insert) and the 
average query cost averaged over all query and data files The 
results are presented m table 4 where we included the 2-level 
grid file ([NHS84], [Hm85]). a very popular pomt access 
method 

qua.Gut 

Greene 

Table 4: unweighted average over all seven dlstnbutlons 
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We were posltlvely surprised by our results The performance 
gam of the R*-tree over the R-tree variants 1s considerably 
higher for pomts than for rectangles In particular Greene’s 
R-tree 1s very mefflclent for pomt data It requires even 
more accesses than the linear R-tree and 138% more than 
the R*-tree, whereas the quadratic R-tree requues 75% more 
disc accesses than the R*-tree Nevertheless, we had 
expected that PAMs l&e the 2-level grid file would perform 
better than the R*-tree However m the over all average the 
2-level grid file performs essentially worse than the R*-tree 
for pomt data An advantage of the grid file 1s the low 
average lnsertlon cost In that sense It might be more 
suitable In an insertion-intensive application Let us 
mention that the complexity of the algorithms of the R*- 
trees 1s rather low m comparison to highly tuned PAMs 

6 Conclusions 

The experimental comparison pointed out that the R*-tree 
proposed m this paper can efflclently be used as an access 
method In database systems organizing both, 
multldlmenslonal points and spatial data As demonstrated 
m an extensive performance comparison with rectangle data, 
the R*-tree clearly outperforms Greene’s R-tree, the quadratic 
R-tree and the popular linear R-tree m all experiments 
Moreover. for pomt data the gam m performance of the R*- 
tree over the other variants 1s increased Addltlonally. the 
R*-tree performs essentially better than the 2-level grid file 
for pomt data 

The new concepts mcorporated m the R*-tree are based 
on the reduction of the area, margin and overlap of the 
directory rectangles Smce all three values are reduced, the 
R*-tree 1s very robust agamst ugly data dlstrlbutlons 
Furthermore, due to the fact of the concept of Forced 
Reinsert, splits can be prevented, the structure 1s 
reorganized dynamically and storage utlhzatlon 1s higher 
than for other R-tree variants The average msertion cost of 
the R*-tree 1s lower than for the well known R-trees 
Although the R*-tree outperforms its competitors, the cost 
for the lmplementatlon of the R*-tree 1s only slightly 
higher than for the other R-trees 

In our future work, the we will mvestlgate whether the 
fan out can be increased by prefixes or by using the grad 
approxlmatlon as proposed m [SK 901 Moreover. we are 
generalizing the R*-tree to handle polygons efficiently 
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